7.1 Lesson

Key Vocabulary •)

input, p. 276 output, p. 276 relation, p. 276 mapping diagram, p. 276 function, p. 277

Ordered pairs can be used to show **inputs** and **outputs**.

🔏 Key Ideas

Relations and Mapping Diagrams

A **relation** pairs inputs with outputs. A relation can be represented by ordered pairs or a mapping diagram.

Ordered Pairs

- (0, 1)
- (1, 2)
- (2, 4)

Mapping Diagram

EXAMPLE 1 Listing Ordered Pairs of Relations

List the ordered pairs shown in each mapping diagram.

Input

The ordered pairs are (1, 3), (2, 6), (3, 9), and (4, 12).

Input

The ordered pairs are (0, 0), (2, 1), (2, -2), and (4, -3).

Output

Try It List the ordered pairs shown in the mapping diagram.

1. Input

Input

EXAMPLE 2

Determining Whether Relations Are Functions

Determine whether each relation is a function.

Input

b.

Each input has exactly one output. So, the relation is a function.

The input 0 has two outputs, 5 and 6. So, the relation is not a function.

Try It Determine whether the relation is a function.

3. **Input**

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.

5. PRECISION Describe how relations and functions are different.

IDENTIFYING FUNCTIONS List the ordered pairs shown in the mapping diagram. Then determine whether the relation is a function.

7.

Input **Output**

8. OPEN-ENDED Copy and complete the mapping diagram at the left to represent a relation that is a function. Then describe how you can modify the mapping diagram so that the relation is *not* a function.