7.2 Lesson

Key Vocabulary (**)

function rule, p. 282

Remember

An independent variable represents a quantity that can change freely. A dependent variable depends on the independent variable.

Functions as Equations

A **function rule** is an equation that describes the relationship between inputs (independent variable) and outputs (dependent variable).

EXAMPLE 1

Writing Function Rules

a. Write a function rule for "The output is five less than the input."

The output is five less than the input.

$$x - 5$$

A function rule is y = x - 5.

b. Write a function rule for "The output is the square of the input."

The output is the square of the input.

A function rule is $y = x^2$.

Try It

1. Write a function rule for "The output is one-fourth of the input."

EXAMPLE 2 Evaluating a Function

What is the value of y = 2x + 5 when x = 3?

$$y = 2x + 5$$

Write the equation.

$$=2(3)+5$$

Substitute 3 for x.

$$= 11$$

Simplify.

Try It Find the value of y when x = 5.

2.
$$y = 4x - 1$$

3.
$$y = 10x$$

4.
$$y = 7 - 3x$$

Functions as Tables and Graphs

A function can be represented by an input-output table and by a graph. The table and graph below represent the function y = x + 2.

Input,	Output,	Ordered Pair, (x, y)
1	3	(1, 3)
2	4	(2, 4)
3	5	(3, 5)

By drawing a line through the points, you graph *all* of the solutions of the function y = x + 2.

EXAMPLE 3

Graphing a Function

Graph the function y = -2x + 1.

Make an input-output table using inputs of -1, 0, 1, and 2.

Input, x	-2x + 1	Output, y	Ordered Pair, (x, y)
-1	-2(-1)+1	3	$(-1, \frac{3}{3})$
0	-2(0)+1	1	(0, <mark>1</mark>)
1	-2(1)+1	-1	(1, -1)
2	-2(2)+1	-3	(2, -3)

Plot the ordered pairs and draw a line through the points.

Try It Graph the function.

5.
$$y = x + 1$$

6.
$$y = -3x$$

7.
$$y = 3x + 2$$

Representations of Functions

Words The output is 2 more than the input.

Equation
$$y = x + 2$$

Input-Output Table

Input, x	Output, y
-1	1
0	2
1	3
2	4

Mapping Diagram

Graph

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.

WRITING FUNCTION RULES Write a function rule for the statement.

- **8.** The output is three times the input.
- **9.** The output is eight more than one-seventh of the input.

EVALUATING A FUNCTION Find the value of y when x = -5.

10.
$$y = 6x$$

11.
$$y = 11 - x$$

12.
$$y = \frac{1}{5}x + 1$$

GRAPHING A FUNCTION Graph the function.

13.
$$y = -2x$$

14.
$$y = x - 3$$

15.
$$y = 9 - 3x$$

16. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

> What output is 4 more than twice the input 3?

What output is twice the sum of the input 3 and 4?

What output is the sum of 2 times the input 3 and 4?

What output is 4 increased by twice the input 3?