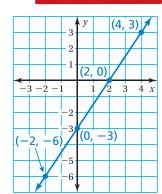
7.3 Lesson


Key Vocabulary **● ③**

linear function, p. 290

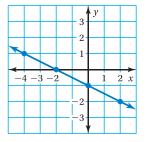
A **linear function** is a function whose graph is a nonvertical line. A linear function can be written in the form y = mx + b, where m is the slope and b is the y-intercept.

EXAMPLE 1

Writing a Linear Function Using a Graph

Use the graph to write a linear function that relates y to x.

Find the slope of the line using the points (2, 0) and (4, 3).

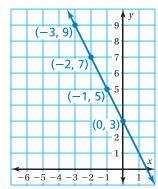

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{3-0}{4-2} = \frac{3}{2}$$

Because the line crosses the *y*-axis at (0, -3), the *y*-intercept is -3.

So, the linear function is $y = \frac{3}{2}x - 3$.

Try It

1. Use the graph to write a linear function that relates *y* to *x*.



EXAMPLE 2

Writing a Linear Function Using a Table

Use the table to write a linear function that relates y to x.

x	-3	-2	-1	0
у	9	7	5	3

Plot the points in the table. Draw a line through the points.

Find the slope of the line using the points (-2, 7) and (-3, 9).

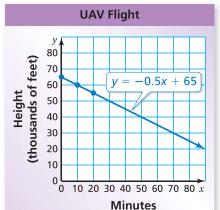
$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{9-7}{-3-(-2)} = \frac{2}{-1} = -2$$

Because the line crosses the *y*-axis at (0, 3), the *y*-intercept is 3.

So, the linear function is y = -2x + 3.

Try It

2. Use the table to write a linear function that relates y to x.


х	-2	-1	0	1
У	2	2	2	2

EXAMPLE 3

Interpreting a Linear Function

An unmanned aerial vehicle (UAV) is used for surveillance. The table shows the height *y* (in thousands of feet) of the UAV *x* minutes after it begins to descend from cruising altitude.

Minutes,	Height (thousands of feet), y	
0	65	
10	60	
20	55	

a. Write and graph a linear function thatrelates y to x.

The table shows a constant rate of change, so you can write a linear function that relates the dependent variable *y* to the independent variable *x*.

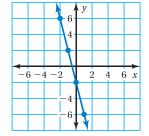
The point (0, 65) indicates that the *y*-intercept is 65. Use the points (0, 65) and (10, 60) to find the slope.

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{60 - 65}{10 - 0} = \frac{-5}{10} = -0.5$$

So, the linear function is y = -0.5x + 65. Plot the points in the table and draw a line through the points.

b. Interpret the slope and the y-intercept.

The slope indicates that the height decreases 500 feet per minute. The *y*-intercept indicates that the descent begins at a cruising altitude of 65,000 feet.


Try It

3. WHAT IF? The rate of descent doubles. Repeat parts (a) and (b).

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.

- **4. WRITING A LINEAR FUNCTION** Use the graph to write a linear function that relates y to x.
- **5. INTERPRETING A LINEAR FUNCTION** The table shows the revenue *R* (in millions of dollars) of a company when it spends *A* (in millions of dollars) on advertising.

Advertising, A	0	2	4	6	8
Revenue, R	2	6	10	14	18

- **a.** Write and graph a linear function that relates R to A.
- **b.** Interpret the slope and the *y*-intercept.