7.3 Practice

Review & Refresh

Write a function rule for the statement. Then graph the function.

- **1.** The output is ten less than the input.
- **2.** The output is one-third of the input.

Solve the system.

3.
$$y = x + 5$$

 $y = -3x + 1$
4. $x + y = -4$
 $6x + 2y = 4$

4.
$$x + y = -4$$

3.
$$y = x + 5$$
 4. $x + y = -4$ **5.** $-4x + 3y = 14$ $y = -3x + 1$ $6x + 2y = 4$ $y = 2x + 8$

Concepts, Skills, & Problem Solving

WRITING AND GRAPHING FUNCTIONS The table shows a familiar pattern from geometry. (a) Determine what the variables x and y represent. Then write a function rule that relates y to x. (b) Is the function a linear function? Explain your reasoning. (See Exploration 1, p. 289.)

WRITING LINEAR FUNCTIONS Use the graph or table to write a linear function that relates y to x.

10.

X	-8	-4	0	4
У	2	1	0	-1

1

11.	х	-3	0	3	6
	У	3	5	7	9

- **12. INTERPRETING A LINEAR FUNCTION** The table shows the length *y* (in inches) of a person's hair after *x* months.
 - **a.** Write and graph a linear function that relates y to x.
 - **b.** Interpret the slope and the *y*-intercept.

Months,	Hair Length, <i>y</i>	
0	11.0	
3	12.5	
6	14.0	

13. INTERPRETING A LINEAR FUNCTION The table shows the percent y (in decimal form) of battery power remaining *x* hours after you turn on a laptop computer.

Hours, x	0	2	4
Power Remaining, y	1.0	0.6	0.2

- **a.** Write and graph a linear function that relates y to x.
- **b.** Interpret the slope, the *x*-intercept, and the *y*-intercept.
- **c.** After how many hours is the battery power at 75%?
- **14. MD MODELING REAL LIFE** The number *y* of calories burned after x minutes of kayaking is represented by the linear function y = 4.5x. The graph shows the number of calories burned by hiking.

b. You perform each activity for 45 minutes. How many total calories do you burn? Justify your answer.

- DIG DEEPER. You and a friend race each other. You give your friend a 50-foot head start. The distance y (in feet) your friend runs after *x* seconds is represented by the linear function y = 14x + 50. A 10-second race ends in a tie. Write an equation for the distance y (in feet) you run after x seconds. When do you win the race? Explain your reasoning.
- **16. WP REASONING** You and your friend are saving money to buy bicycles that cost \$175 each. You have \$45 to start and save an additional \$5 each week. The graph shows the amount y (in dollars) that your friend has after x weeks. Who can buy a bicycle first? Justify your answer.

17. CRITICAL THINKING Is every linear equation a linear function? Explain your reasoning.

18. PROBLEM SOLVING The heat index is calculated using the relative humidity and the temperature. For every 1 degree increase in the temperature from 94°F to 97°F at 75% relative humidity, the heat index rises 4°F. On a summer day, the relative humidity is 75%, the temperature is 94°F, and the heat index is 124°F. Estimate the heat index when the relative humidity is 75% and the temperature is 100°F. Use a function to justify your answer.