A function can be thought of as a rule that you apply to the input in order to get the output. You can describe a nonlinear function with words or with an equation, just as you did with linear functions.

Problem 3 Writing a Rule to Describe a Nonlinear Function

The ordered pairs (1, 2), (2, 4), (3, 8), (4, 16), and (5, 32) represent a function. What is a rule that represents this function?

Make a table to organize the x- and y-values. For each row, identify rules that produce the given y-value when you substitute the x-value. Look for a pattern in the y-values.

X	у	What rule produces 2, given an x-value of 1? The
1	2	rules $y = 2x$, $y = x + 1$, and $y = 2^x$ work for (1, 2).
2	4 -	y = x + 1 does not work for (2, 4). $y = 2x$ works
3	8	for (2, 4), but not for (3, 8). $y = 2^x$ works for all three pairs.
4	16	7
5	32	$8 = 2 \cdot 2 \cdot 2$ and $16 = 2 \cdot 2 \cdot 2 \cdot 2$. The pattern of the y-values matches 2^1 , 2^2 , 2^3 , 2^4 , 2^5 , or $y = 2^x$.

The function can be represented by the rule $y = 2^x$.

Got It? 3. What is a rule for the function represented by the ordered pairs (1, 1), (2, 4), (3, 9), (4, 16), and (5, 25)?

How can you use reasoning to write

You can solve a simpler problem by writing a rule based on the first one or two rows of the table. Then see if the rule

works for the other rows.

a rule?

Lesson Check

Do you know HOW?

1. Graph the function represented by the table below. Is the function linear or nonlinear?

x	0	1	2	3	4	Ì
y	12	13	14	15	16	

- **2.** The ordered pairs (0, -2), (1, 1), (2, 4), (3, 7), and (4, 10) represent a function. What is a rule that represents this function?
- 3. Which rule could represent the function shown by the table below?

x	0	1	2	3	4	
У	0	-1	-4	-9	-16	

A.
$$v = x^2$$

B.
$$y = -x^3$$
 C. $y = -x^2$

C.
$$y = -x^2$$

Do you UNDERSTAND?

4. Vocabulary Does the graph represent a linear

6 5. Error Analysis A classmate says that the function shown by the table at the right can be represented by the rule y = x + 1. Describe and correct your classmate's error.

X	у
0	1
1	2
2	5
3	10
4	17
	1

Practice and Problem-Solving Exercises

The cost C, in dollars, for pencils is a function of the number n of pencils purchased. The length L of a pencil, in inches, is a function of the time t, in seconds, it has been sharpened. Graph the function shown by each table below. Tell whether the function is *linear* or *nonlinear*.

See Problem 1.

Pend	cil Co	st			
Number of Pencils, n	6	12	18	24	30
Cost, C	51	\$2	\$3	\$4	\$5

P	encil	Sharp	ening	9		
Time (s), t	0	3	6	9	12	15
Length (in.), L	7.5	7.5	7.5	7.5	7.4	7.3

Graph the function shown by each table. Tell whether the function is *linear* or *nonlinear*.

8.

-	-
X	у
0	5
1	5
2	5
3	5
1	1

9.

X	y
0	-4
1	-3
2	0
3	5
STATE OF	1

10.

7.

x	у
0	0
1	1
2	-5
3	8

11.

1	X	y
1	0	0
1	1	3
1	2	6
	3	9
J		

12. For the diagram below, the table gives the total number of small triangles *y* in figure number *x*. What pattern can you use to complete the table? Represent the relationship using words, an equation, and a graph.

Figure 1

Figure 2

Figure 3

See Problem 2.

Total Small Triangles, y	Ordered Pair (x, y)	
3	(1, 3)	
12	(2, 12)	
27	(3, 27)	
	-	
	Triangles, y 3 12	

Each set of ordered pairs represents a function. Write a rule that represents the function.

See Problem 3.

14.
$$\left(1, \frac{2}{3}\right), \left(2, \frac{4}{9}\right), \left(3, \frac{8}{27}\right), \left(4, \frac{16}{81}\right), \left(5, \frac{32}{243}\right)$$

- **© 17. Writing** The rule $V = \frac{4}{3}\pi r^3$ gives the volume V of a sphere as a function of its radius r. Identify the independent and dependent variables in this relationship. Explain your reasoning.
- **18. Open-Ended** Write a rule for a nonlinear function such that y is negative when x = 1, positive when x = 2, negative when x = 3, positive when x = 4, and so on.