Problem 5 Raising a Number in Scientific Notation to a Power

Aircraft The expression $\frac{1}{2}mv^2$ gives the kinetic energy, in joules, of an object with a mass of m kg traveling at a speed of v meters per second. What is the kinetic energy of an experimental unmanned jet with a mass of 1.3 $imes 10^3$ kg traveling at a speed of about $3.1 \times 10^3 \,\mathrm{m/s}$?

Plan

How do you raise a number in scientific notation to a power?

A number written in scientific notation is a product. Use the property for raising a product to a power.

$$\frac{1}{2}mv^2 = \frac{1}{2} \cdot (1.3 \times 10^3)(3.1 \times 10^3)^2$$
$$= \frac{1}{2} \cdot 1.3 \cdot 10^3 \cdot 3.1^2 \cdot (10^3)^2$$
$$= \frac{1}{2} \cdot 1.3 \cdot 10^3 \cdot 3.1^2 \cdot 10^6$$

$$= \frac{1}{2} \cdot 1.3 \cdot 3.1^{2} \cdot 10^{3} \cdot 10^{6}$$
$$= \frac{1}{2} \cdot 1.3 \cdot 3.1^{2} \cdot 10^{3+6}$$

$$=6.2465\times10^{9}$$

Substitute the values for m and v into the expression.

Raise the two factors to the second power.

Multiply the exponents of a power raised to a power.

Use the Commutative Property of Multiplication.

Add exponents of powers with the same base.

Simplify. Write in scientific notation.

The aircraft has a kinetic energy of about 6.2×10^9 joules.

Got It? 5. What is the kinetic energy of an aircraft with a mass of 2.5×10^5 kg traveling at a speed of 3×10^2 m/s?

Lesson Check

Do you know HOW?

Simplify each expression.

1.
$$(n^3)^6$$

2.
$$(b^{-7})^3$$

3.
$$(3a^{\frac{1}{2}})^4$$

4.
$$(9x^{\frac{1}{2}})^2(x^2)^5$$

Simplify each expression. Write each answer in scientific notation.

5.
$$(4 \times 10^5)^2$$

6.
$$(2 \times 10^{-3})^5$$

Do you UNDERSTAND? MATHEMATICAL PRACTICES

- 7. Vocabulary Compare and contrast the property for raising a power to a power and the property for multiplying powers with the same base.
- **8. Error Analysis** One student simplified $x^5 + x^5$ to x^{10} . A second student simplified $x^5 + x^5$ to $2x^5$. Which student is correct? Explain.
- 9. Open-Ended Write four different expressions that are equivalent to $(x^{\frac{2}{3}})^3$.

Practice and Problem-Solving Exercises

Simplify each expression.

11.
$$(n^4)^8$$

12.
$$(c^2)^{\frac{1}{4}}$$

14.
$$(w^7)^{-1}$$

15.
$$(x^{\frac{3}{5}})^{-\frac{1}{2}}$$

16.
$$d(d^{-2})^{-9}$$

17.
$$(z^8)^0 z^{\frac{1}{2}}$$

13. $(x^{\frac{2}{5}})^{10}$

18.
$$(a^{\frac{2}{3}})^3c^4$$

19.
$$(c^3)^{\frac{1}{9}}(d^3)^0$$

20.
$$(t^2)^{-2}(t^2)^{-5}$$

21.
$$(m^3)^{-1}(x^{\frac{1}{3}})^{\frac{1}{4}}$$

Simplify each expression.

22.
$$(3n^{-6})^{-4}$$

23.
$$(7a)^{-2}$$

24.
$$(5y^{\frac{1}{2}})^4$$

25.
$$(36g^4)^{-\frac{1}{2}}$$

26.
$$(2x^{\frac{1}{6}})^3x^2$$
 27. $(2y^{\frac{7}{9}})^{-3}$

27.
$$(2y^{\frac{7}{9}})^{-3}$$

28.
$$(r^{\frac{2}{5}}s)^5$$

29.
$$(y^2z^{-3})^{\frac{1}{6}}(y^3)^2$$

30.
$$(3b^{-2})^2(a^2b^4)^3$$

31.
$$4j^2k^6(2j^{11})^3k^5$$

32.
$$(mg^4)^{-1}(mg^4)$$

33.
$$(2j^2k^4)^{-5}(k^{-1}j^7)^6$$

See Problem 5.

See Problems 3 and 4.

Simplify. Write each answer in scientific notation.

34.
$$(3 \times 10^5)^2$$

35.
$$(4 \times 10^2)^5$$

36.
$$(2 \times 10^{-10})^3$$

37.
$$(2 \times 10^{-3})^3$$

38.
$$(7.4 \times 10^4)^2$$

39.
$$(6.25 \times 10^{-12})^{-2}$$
 40. $(3.5 \times 10^{-4})^3$

40.
$$(3.5 \times 10^{-4})^3$$

41.
$$(2.37 \times 10^8)^3$$

42. Geometry The radius of a cylinder is 7.8×10^{-4} m. The height of the cylinder is 3.4×10^{-2} m. What is the volume of the cylinder? Write your answer in scientific notation. (*Hint*: $V = \pi r^2 h$)

Complete each equation.

43.
$$(b^2)^{\blacksquare} = b^8$$

44.
$$(m^{\parallel})^{\frac{1}{3}} = m^{-12}$$

45.
$$(x^{\blacksquare})^7 = x^6$$

46.
$$(n^9)^{\blacksquare} = n$$

47.
$$(y^{-4})^{\blacksquare} = y^{\frac{1}{2}}$$

48.
$$7(c^1)^{11} = 7c^{\frac{2}{3}}$$

49.
$$(5x^{-1})^2 = 25x^{-4}$$

50.
$$(3x^3y^{\blacksquare})^3 = 27x^9$$

51.
$$(m^2n^3)^{\blacksquare} = \frac{1}{m^6n^9}$$

52. Think About a Plan How many times the volume of the small cube is the volume of the large cube?

· What property of exponents can you use to simplify the volume expressions?

Simplify each expression.

53.
$$3^2(3x)^3$$

55.
$$(b^{\frac{1}{6}})^3 b^{\frac{1}{6}}$$

56.
$$(-5x)^2 + 5x^2$$

57.
$$(-2a^{\frac{2}{3}}b)^3(ab^{\frac{1}{3}})^3$$

58.
$$(2x^{-3})^2(0.2x)^2$$

59.
$$4xy^20^4(-y)^{-3}$$

60.
$$(10^3)^4(4.3 \times 10^{-8})$$

- **62. Reasoning** Simplify $(x^2)^3$ and x^2^3 . Are the expressions equivalent? Explain.
- 63. a. Error Analysis What mistake did the student make in simplifying the expression at the right?
 - b. What is the correct simplified form of the expression?

- STEM 64. Wind Energy The power generated by a wind turbine depends on the wind speed. The expression $800v^3$ gives the power in watts for a certain wind turbine at wind speed v in meters per second. If the wind speed triples, by what factor does the power generated by the wind turbine increase?
 - **65.** Can you write the expression $49x^2y^2z^2$ using only one exponent? Show how or explain why not.