

Got It? 3. Write each radical expression in exponential form.

- **a.** $\sqrt[3]{s^2}$ **b.** $12\sqrt[3]{x^4}$ **c.** $\sqrt{(4y)^5}$
- d. $\sqrt[4]{256a^8}$

Problem 4 Using a Radical Expression STEM

Biology You can estimate the metabolic rate of living organisms based on body mass using Kleiber's law. The formula $R = 73.3 \sqrt[4]{M^3}$ relates metabolic rate R measured in Calories per day to body mass M measured in kilograms. What is the metabolic rate of a dog with a body mass of 18 kg?

a calculator.

How can you find the approximate value of the expression? You can use 18^(3/4) to simplify the radical using

- $=73.3\sqrt[4]{18^3}$
- Substitute 18 for M.
- ≈ 640.5578436 Use a calculator to simplify.

The metabolic rate is about 641 Calories per day.

Got It? 4. What is the metabolic rate of a man with a body mass of 75 kg?

Lesson Check

Do you know HOW?

Simplify each expression.

- 1. 16/64
- 2. 1/81
- 3. $(\sqrt[3]{125})^4$

Write each expression using rational exponents in radical form and each radical expression in exponential form.

- **4.** \sqrt{x} **5.** $c^{\frac{1}{5}}$ **6.** $(8d)^{\frac{2}{3}}$ **7.** $\sqrt[4]{16v^3}$

Do you UNDERSTAND?

- 8. Error Analysis What is the error in the problem at the right? What is the correct answer?
 - 9. Write a rule for multiplying two radicals with the same radicand. Justify why your rule works.

10. Does $\sqrt{4^3} - \sqrt{4} = 4$? Explain why or why not.

Practice and Problem-Solving Exercises

What is the value of each expression?

11. 12/49

12. $\sqrt[5]{1}$

See Problem 1.

14. $\sqrt[2]{81}$

15. $\sqrt[3]{216}$

16. V81

13. V 625

Write each expression in radical form.

See Problem 2.

17. $a^{\frac{2}{3}}$

18. $(64b)^{\frac{3}{4}}$

19. $25x^{\frac{1}{2}}$

20, 24

21. $(25x)^{\frac{1}{2}}$

22. 27a3

23. (98d)¹/₂

24. 18b4

25. (24c)3

Write each expression in exponential form.

See Problem 3.

26.
$$\sqrt[5]{a^3}$$

27.
$$\sqrt{(2c)^4}$$

28.
$$\sqrt[4]{256a^3}$$

29.
$$\sqrt[3]{(8x)^2}$$

30.
$$\sqrt[3]{27c^2}$$

31.
$$\sqrt[4]{625}v^3$$

32.
$$\sqrt{36x}$$

33.
$$\sqrt[4]{x^3}$$

34.
$$\sqrt[3]{8b^5}$$

- **35. Manufacturing** A company that manufactures memory chips for digital cameras uses the formula $c = 120\sqrt[3]{n^2} + 1300$ to determine the cost c, in dollars, of producing n chips. How much will it cost to produce 250 chips?
- **36. Archaeology** Carbon-14 is present in all living organisms and decays at a predictable rate. To estimate the age of an organism, archaeologists measure the amount of carbon-14 left in its remains. The approximate amount of carbon-14 remaining after 5000 years can be found using the formula $A = A_0(2.7)^{-\frac{3}{5}}$, where A_0 is the initial amount of carbon-14 in the sample that is tested. How much carbon-14 is left in a sample that is 5000 years old and originally contained 7.0×10^{-12} grams of carbon-14?

Simplify each expression using the properties of exponents, and then write the expression in radical form.

37.
$$(x^{\frac{3}{4}})(x^{\frac{1}{2}})$$

38.
$$(a^{\frac{2}{3}})(a^{\frac{1}{4}})$$

39.
$$(cd)^{\frac{1}{2}}(d^{\frac{1}{3}})$$

40.
$$(3x^{\frac{1}{3}})(8x^2)$$

41.
$$(36x)^{\frac{1}{2}}(49x)^{\frac{1}{2}}$$

42.
$$(x^{\frac{2}{3}})(8x)^{\frac{1}{3}}$$

Write each expression in exponential form. Simplify when possible.

43.
$$\sqrt[3]{b^2} - \sqrt[3]{b}$$

44.
$$3\sqrt[4]{a^3} - 2\sqrt[4]{a^3}$$

45.
$$(\sqrt[3]{8b^5}) - (\sqrt[4]{256a^3})$$

46.
$$\sqrt[4]{(9x)^2} + \sqrt[4]{625y^3}$$

47.
$$(\sqrt[3]{y})(\sqrt[3]{y})(\sqrt[3]{y})$$

48.
$$\sqrt{(2c)^4} + \sqrt[3]{c^6}$$

- **49. Sports** The radius r of a sphere that has volume V is $r = \sqrt[3]{\frac{3V}{4\pi}}$. The volume of a basketball is approximately 434.67 in.³. The radius of a tennis ball is about one fourth the radius of a basketball. Find the radius of the tennis ball.
- **50. a.** Show that $\sqrt{x^2} = x$ by rewriting $\sqrt{x^2}$ in exponential form.
 - **b.** Show that $\sqrt[4]{x^2} = \sqrt{x}$ by rewriting $\sqrt[4]{x^2}$ in exponential form.
- **6 51. Think about a Plan** You want to simplify the expression $4x^{\frac{3}{2}} + 3\sqrt{x^3}$.
 - How can you write the radical expression using a rational exponent?
 - · Can you add the resulting terms?
 - What is the result in simplest form?
 - Can you write the result in two equivalent forms?
- **52. Open-Ended** Write an expression using rational exponents. Then write an equivalent expression using radicals.