In the Concept Byte after Lesson 6-1, you solved one-variable linear equations using graphs and a graphing calculator. In the next example, you will write each side of the equation as a function and graph the functions. The *x*-value where the functions intersect is a solution.

Problem 5 Solving One-Variable Equations

What is the solution or solutions of $2^x = 0.5x + 2$?

Step 1 Write each side of the equation as a function equation.

$$f(x) = 2^x$$
 and $g(x) = 0.5x + 2$

Step 2 Graph the equations using a graphing calculator. Use y_1 for f(x) and y_2 for g(x).

Step 3 Use the CALC feature. Chose INTERSECT to find the points where the lines intersect.

The solutions of $2^x = 0.5x + 2$ are about -3.86 and 1.45.

Got It? 5. What is the solution or solutions of each equation?

a.
$$0.3^x = 5$$

b.
$$1.25^x = -2x$$

c.
$$-(2^x) = \frac{3}{4}x - 4$$

Think

solution?

of x.

How can you check

Substitute for x in the

original equation. Make

sure you use the same x-value for each instance

that the x-value is a

Lesson Check

Do you know HOW?

Evaluate each function for the given value.

1.
$$f(x) = 6 \cdot 2^x$$
 for $x = 3$

2.
$$g(w) = 45 \cdot 3^w$$
 for $w = -2$

Graph each function.

3.
$$y = 3^x$$

4.
$$f(x) = 4\left(\frac{1}{2}\right)^x$$

Do you UNDERSTAND?

- 5. Vocabulary Describe the differences between a linear function and an exponential function.
- **6. Reasoning** Is $y = (-2)^x$ an exponential function? Justify your answer.
- **7. Error Analysis** A student evaluated the function $f(x) = 3 \cdot 4^x$ for x = -1 as shown at the right. Describe and correct the student's mistake.

Practice and Problem-Solving Exercises

Determine whether each table or rule represents a linear or an exponential function. Explain why or why not.

See Problem 1.

8.	_		
٠.	X	1	2

x	1	2	3	4
У	2	8	32	128

10.
$$y = 4 \cdot 5^x$$

11.
$$y = 12 \cdot x$$

12.
$$y = -5 \cdot 0.25^x$$

13.
$$y = 7x + 3$$

Evaluate each function for the given value.

See Problem 2.

14.
$$f(x) = 6^x$$
 for $x = 2$

15.
$$g(t) = 2 \cdot 0.4^t$$
 for $t = -2$

16.
$$v = 20 \cdot 0.5^x$$
 for $x = 3$

17.
$$h(w) = -0.5 \cdot 4^w$$
 for $w = 18$

- 18. Finance An investment of \$5000 doubles in value every decade. The function $f(x) = 5000 \cdot 2^x$, where x is the number of decades, models the growth of the value of the investment. How much is the investment worth after 30 yr?
- 19. Wildlife Management A population of 75 foxes in a wildlife preserve quadruples in size every 15 yr. The function $y = 75 \cdot 4^x$, where x is the number of 15-yr periods, models the population growth. How many foxes will there be after 45 yr?

Graph each exponential function.

See Problem 3.

See Problem 4.

20.
$$y = 4^x$$

21.
$$y = -4^{3}$$

22.
$$y = (\frac{1}{3})^x$$

22.
$$y = \left(\frac{1}{3}\right)^x$$
 23. $y = -\left(\frac{1}{3}\right)^x$

24.
$$y = 10 \cdot \left(\frac{3}{2}\right)^x$$
 25. $y = 0.1 \cdot 2^x$

25.
$$y = 0.1 \cdot 2^x$$

26.
$$y = \frac{1}{4} \cdot 2^x$$

27.
$$y = 1.25^x$$

- 28. Admissions A new museum had 7500 visitors this year. The museum curators expect the number of visitors to grow by 5% each year. The function $y = 7500 \cdot 1.05^x$ models the predicted number of visitors each year after x years. Graph the function.
- 29. Environment A solid waste disposal plan proposes to reduce the amount of garbage each person throws out by 2% each year. This year, each person threw out an average of 1500 lb of garbage. The function $y = 1500 \cdot 0.98^x$ models the average amount of garbage each person will throw out each year after x years. Graph the function.

See Problem 5.

30.
$$4^x = \frac{3}{2}x + 5$$

31.
$$x + 3 = 3^x$$

Evaluate each function over the domain $\{-2, -1, 0, 1, 2, 3\}$. As the values of the domain increase, do the values of the range increase or decrease?

32.
$$f(x) = 5^x$$

33.
$$v = 2.5^{x}$$

34.
$$h(x) = 0.1^x$$

35.
$$f(x) = 5 \cdot 4^x$$

36.
$$y = 0.5^x$$

37.
$$y = 8^x$$

38.
$$g(x) = 4 \cdot 10^x$$

39.
$$y = 100 \cdot 0.3^x$$

40. Compare the rule and the function table below. Which function has the greater value when x = 12? Explain.

Function 1

$$y = 4^x$$

Function 2

X	1	2	3	4
У	5	25	125	625

- **41.** You have just read a journal article about a population of fungi that doubles every 3 weeks. The beginning population was 10. The function $y = 10 \cdot 2^{\frac{n}{3}}$ represents the population after n weeks.
 - **a.** You have a population of 15 of the same fungi. Assuming the journal articles gives the correct rate of increase, write the function that represents the population of fungi after *n* weeks.
 - **b.** Suppose you find another article that states that the fungi population triples every 4 weeks. If there are currently 15 fungi in your population, write the function that represents the population after *n* weeks.
- 42. Think About a Plan Hydra are small freshwater animals. They can double in number every two days in a laboratory tank. Suppose one tank has an initial population of 60 hydra. When will there be more than 5000 hydra?

· What function models the situation?

- **b.** What point is on all three graphs?
- **c.** Does the graph of an exponential function intersect the *x*-axis? Explain.
- **d. Reasoning** How does the graph of $y = b^x$ change as the base b increases or decreases?

Which function has the greater value for the given value of x?

44.
$$y = 4^x$$
 or $y = x^4$ for $x = 2$

45.
$$f(x) = 10 \cdot 2^x$$
 or $f(x) = 200 \cdot x^2$ for $x = 7$

46.
$$y = 3^x$$
 or $y = x^3$ for $x = 5$

47.
$$f(x) = 2^x$$
 or $f(x) = 100x^2$ for $x = 10$

- 48. Computers A computer valued at \$1500 loses 20% of its value each year.
 - ${\bf a.}$ Write a function rule that models the value of the computer.
 - ${f b.}$ Find the value of the computer after 3 yr.
 - c. In how many years will the value of the computer be less than \$500?

- **b.** What do you notice about the graphs for the values of *x* between 1 and 3?
- **c. Reasoning** How do you think the graph of $y = 8^x$ would compare to the graphs of $y = x^2$ and $y = 2^x$?
- **6 50. Writing** Find the range of the function $f(x) = 500 \cdot 1^x$ using the domain $\{1, 2, 3, 4, 5\}$. Explain why the definition of *exponential function* states that $b \neq 1$.