You can solve some quadratic equations that model real-world problems by finding square roots. In many cases, the negative square root may not be a reasonable solution.

(

Problem 3 Choosing a Reasonable Solution

GRIDDED RESPONSE

Aquarium An aquarium is designing a new exhibit to showcase tropical fish. The exhibit will include a tank that is a rectangular prism with a length ℓ that is twice the width w. The volume of the tank is 420 ft³. What is the width of the tank to the nearest tenth of a foot?

Plan

How can you write the length of the tank? The length ℓ is twice the width w, so write the length as 2w.

$$V = \ell w h$$

Use the formula for volume of a rectangular prism.

$$420 = (2w)w(3)$$

Substitute 420 for V, 2w for ℓ, and 3 for h.

$$420 = 6w^2$$

Simplify.

$$70 = w^2$$

Divide each side by 6.

$$\pm\sqrt{70}=w$$

Find the square roots of each side.

$$\pm 8.366600265 \approx w$$

Use a calculator.

A tank cannot have a negative width, so only the positive square root makes sense. The tank will have a width of about 8.4 ft.

- **Got lt?** 3. a. Suppose the tank in Problem 3 will have a height of 4 ft and a volume of 500 ft³. What is the width of the tank to the nearest tenth of a foot?
 - b. Reasoning What are the disadvantages of using a graph to approximate the solution to Problem 3? Explain.

Lesson Check

Do you know HOW?

Solve each equation by graphing the related function or by finding square roots.

1.
$$x^2 - 25 = 0$$

2.
$$2x^2 - 8 = 0$$

3.
$$t^2 = 144$$

4.
$$y^2 - 225 = 0$$

Do you UNDERSTAND?

- S. Vocabulary What are the zeros of a function? Give an example of a quadratic function and its zeros.
- **6. Compare and Contrast** When is it easier to solve a quadratic equation of the form $ax^2 + c = 0$ using square roots than to solve it using a graph?
- **(6) 7. Reasoning** Consider the equation $ax^2 + c = 0$, where $a \neq 0$. What is true of a and c if the equation has two solutions? Only one solution? No solutions?

Practice and Problem-Solving Exercises

Solve each equation by graphing the related function. If the equation has no real-number solution, write *no solution*.

See Problem 1.

8.
$$x^2 - 9 = 0$$

9.
$$x^2 + 7 = 0$$

10.
$$3x^2 = 0$$

11.
$$3x^2 - 12 = 0$$

12.
$$x^2 + 4 = 0$$

13.
$$\frac{1}{3}x^2 - 3 = 0$$

14.
$$\frac{1}{2}x^2 + 1 = 0$$

15.
$$x^2 + 5 = 5$$

16.
$$\frac{1}{4}x^2 - 1 = 0$$

17.
$$x^2 + 25 = 0$$

18.
$$x^2 - 10 = -10$$

19.
$$2x^2 - 18 = 0$$

Solve each equation by finding square roots. If the equation has no real-number solution, write *no solution*.

20.
$$n^2 = 81$$

21.
$$a^2 = 324$$

22.
$$k^2 - 196 = 0$$

23.
$$r^2 + 49 = 49$$

24.
$$w^2 - 36 = -64$$

25.
$$4g^2 = 25$$

26.
$$64b^2 = 16$$

27.
$$5a^2 - 20 = 0$$

28.
$$144 - p^2 = 0$$

29.
$$2r^2 - 32 = 0$$

30.
$$3a^2 + 12 = 0$$

31.
$$5z^2 - 45 = 0$$

Model each problem with a quadratic equation. Then solve. If necessary, round to the nearest tenth.

- 32. Find the length of a side of a square with an area of 169 m^2 .
- 33. Find the length of a side of a square with an area of 75 ft².
- 34. Find the radius of a circle with an area of 90 cm².
- **35. Painting** You have enough paint to cover an area of 50 ft². What is the side length of the largest square that you could paint? Round your answer to the nearest tenth of a foot.
- **36. Gardening** You have enough shrubs to cover an area of 100 ft². What is the radius of the largest circular region you can plant with these shrubs? Round your answer to the nearest tenth of a foot.

Mental Math Tell how many solutions each equation has.

37.
$$h^2 = -49$$

38.
$$c^2 - 18 = 9$$

39.
$$s^2 - 35 = -35$$

- **6 40. Think About a Plan** A circular above-ground pool has a height of 52 in. and a volume of 1100 ft³. What is the radius of the pool to the nearest tenth of a foot? Use the equation $V = \pi r^2 h$, where V is the volume, r is the radius, and h is the height.
 - How can drawing a diagram help you solve this problem?
 - Do you need to convert any of the given measurements to different units?
- **41. Reasoning** For what values of n will the equation $x^2 = n$ have two solutions? Exactly one solution? No solution?

42. Quilting You are making a square quilt with the design shown at the right. Find the side length x of the inner square that would make its area equal to 50% of the total area of the quilt. Round to the nearest tenth of a foot.

Solve each equation by finding square roots. If the equation has no real-number solution, write no solution. If a solution is irrational, round to the nearest tenth.

43.
$$1.2z^2 - 7 = -34$$

44.
$$49p^2 - 16 = -7$$

45.
$$3m^2 - \frac{1}{12} = 0$$

46.
$$\frac{1}{2}t^2 - 4 = 0$$

47.
$$7y^2 + 0.12 = 1.24$$

43.
$$1.2z^2 - 7 = -34$$
 44. $49p^2 - 16 = -7$ **45.** $3m^2 - \frac{1}{12} = 0$ **46.** $\frac{1}{2}t^2 - 4 = 0$ **47.** $7y^2 + 0.12 = 1.24$ **48.** $-\frac{1}{4}x^2 + 3 = 0$

- **49.** Find the value of *c* such that the equation $x^2 c = 0$ has 12 and -12 as solutions.
- STEM 50. Physics The equation $d = \frac{1}{2}at^2$ gives the distance d that an object starting at rest travels given acceleration a and time t. Suppose a ball rolls down the ramp shown at the right with acceleration $a = 2 \text{ ft/s}^2$. Find the time it will take the ball to roll from the top of the ramp to the bottom. Round to the nearest tenth of a second.

- 51. Error Analysis Describe and correct the error made in solving the equation.
- **6 52. Open-Ended** Write and solve an equation in the form $ax^2 + c = 0$, where $a \neq 0$, that satisfies the given condition.

b. The equation has exactly one solution.

c. The equation has two solutions.

Geometry Find the value of h for each triangle. If necessary, round to the nearest tenth.

53.

- 6 55. You can use a spreadsheet like the one at the right to solve a quadratic equation.
 - a. What spreadsheet formula would you use to find the value
 - b. Use a spreadsheet to find the solutions of the quadratic equation $6x^2 - 24 = 0$. Explain how you used the spreadsheet to find the solutions.
 - c. Reasoning Suppose a quadratic equation has solutions that are not integers. How could you use a spreadsheet to approximate the solutions?

	Α	В
1	Х	$6x^2 - 24 = 0$
2	-3	
3	-2	
4	-1	
5	0	
6	1	10
7	2	III .
8	3	