

Lesson Check

Do you know HOW?

Which type of function best models each set of data points?

- **1.** (0, 11), (1, 5), (2, 3), (3, 5), (4, 11)
- **2.** (-4, -10), (-2, -7), (0, -4), (2, -1), (4, 2)
- 3. (-1, 8), (0, 4), (2, 1), (3, 0.5)

Do you UNDERSTAND?

- (a) 4. Reasoning Can the y-values in a set of data pairs have both a common ratio and a common difference? Explain why or why not.
- 5. Writing Explain how to decide whether a linear, exponential, or quadratic function is the most appropriate model for a set of data.

Practice and Problem-Solving Exercises

Graph each set of points. Which model is most appropriate for each set?

- 7. (-2, -8), (0, -4), (3, 2), (5, 6)
- 8. (-3, 6), (-1, 0), (0, -1), (1, -1.5)

6. (-2, -3), (-1, 0), (0, 1), (1, 0), (2, -3)

- 9. (-2, 5), (-1, -1), (0, -3), (1, -1), (2, 5)
- **10.** $(-1, -5\frac{2}{3}), (0, -5), (2, 3), (3, 27)$
- **11.** (-3, 8), (-1, 6), (0, 5), (2, 3), (3, 2)

Which type of function best models the data in each table? Use differences or ratios.

See Problem 2.

See Problem 1.

12.

x	У
0	0
1	1.5
2	6
3	13.5
4	24
1	

13.

X	y
0	-5
1	-3
2	-1
3	1
4	3
-	3

14.

×	у
0	1
1	1.2
2	1.44
3	1.728
4	2.0736
4	2.0730

Which type of function best models the data in each table? Write an equation to model the data.

See Problem 3.

15.

У
0
3
11.3
24.7
43.3

16.

х	У
0	5
1	2
2	0.79
3	0.32
4	0.128
	0.32

17.

x	у
0	2
1	1.52
2	1
3	0.49
4	0
THE OWNER OF THE OWNER, WHEN	-

18. Sports The number of people attending a school's first five football games is shown in the table below. Which type of function best models the data? Write an equation to model the data.

Game	1	2	3	4	5	B
Attendance	248	307	366	425	484	

19. Banking The average monthly balance of a savings account is shown in the table at the right. Which type of function best models the data? Write an equation to model the data.

Month	Balance (\$)
0	540
1	556.20
2	572.89
3	590.07
4	607.77

B Apply

- 20. Error Analysis Tom claims that, because the data pairs (1, 4), (2, 6), (3, 9), and (4, 13.5) have y-value with a common ratio, they are best modeled by a quadratic function. What is his error?
- 21. a. Make a table of five ordered pairs for each function using consecutive x-values. Find the common second difference.

i.
$$f(x) = x^2 - 3$$

ii.
$$f(x) = 3x^2$$

iii.
$$f(x) = 4x^2 - 5x$$

- **b.** What is the relationship between the common second difference and the coefficient of the x^2 -term?
- c. Reasoning Explain how you could use this relationship to model data.
- 22. Think About a Plan The number of visitors at a Web site over several days is shown in the table at the right. What is an equation that models the data?
 - · Does the graph of the data suggest a type of function to use?
 - · Will your equation fit the data exactly? How do you know?
- 23. Open-Ended Write a set of data pairs that you could model with a quadratic function.
- **24. Zoology** A conservation organization collected the data on the number of frogs in a local wetland, shown in the table at the right. Which type of function best models the data? Write an equation to model the data.
 - **25.** The table below shows the projected population of a small town. Let t = 0 correspond to the year 2020.
 - a. Graph the data. Does the graph suggest a linear, exponential, or quadratic
 - **b.** Find the rate of change in population with respect to time from one data pair to the next. How do the results support your answer to part (a)?
 - c. Write a function that models the data shown in the table.
 - d. Use the function from part (c) to predict the town's population in 2050.
 - **e.** Suppose the projected population s of another small town is represented by the function s = 50t + 1300. Let t = 0 correspond to the year 2020. Write an expression that can be used to find the difference in population of the two towns.

Year, t	0	5	10	15
Population, p	5100	5700	6300	6900

Visitors
52
197
447
805
1270

Year	Number of Frogs
0	120
1	101
2	86
3	72
4	60