For any positive number k, graphing $y = \sqrt{x} + k$ translates the graph of $y = \sqrt{x}$ up *k* units. Graphing $y = \sqrt{x} - k$ translates the graph of $y = \sqrt{x}$ down *k* units.

Think

Is this similar to a problem you've seen before?

Yes. You have graphed functions of the form y = |x| + k by translating the graph of y = |x|.

What is the graph of $y = \sqrt{x} + 2$?

For the graph of $y = \sqrt{x} + 2$ the graph of $y = \sqrt{x}$ is shifted 2 units up.

Got It? 3. What is the graph of $y = \sqrt{x} - 3$?

For any positive number h, graphing $y = \sqrt{x+h}$ translates the graph of $y = \sqrt{x}$ to the left h units. Graphing $y = \sqrt{x - h}$ translates the graph of $y = \sqrt{x}$ to the right h units.

Think

problem?

Is there another way to solve this

Yes. You could make a

table of ordered pairs

and then plot them.

that satisfy the equation

Problem 4 Graphing a Horizontal Translation

What is the graph of $y = \sqrt{x+3}$?

For the graph of $y = \sqrt{x+3}$ the graph of $y = \sqrt{x}$ is shifted 3 units to the left.

Got It? 4. What is the graph of $y = \sqrt{x-3}$?

Lesson Check

Do you know HOW?

1. What is the domain of the function $y = \sqrt{x+3}$?

Graph each function.

2.
$$y = 2\sqrt{x}$$

3.
$$y = \sqrt{x} - 6$$

Do you UNDERSTAND?

- **6 4. Vocabulary** Is $y = x\sqrt{5}$ a square root function? Explain.
- **6 5. Writing** Explain how the graph of $y = \sqrt{x-1}$ is related to the graph of $y = \sqrt{x}$.
- (a) 6. Reasoning Can the domain of a square root function include negative numbers? Explain.

Practice and Problem-Solving Exercises (

Find the domain of each function.

7.
$$y = \frac{1}{2}\sqrt{x}$$

8.
$$y = \sqrt{x} + 2$$

9.
$$y = \sqrt{x-7}$$

10.
$$y = 3\sqrt{\frac{x}{3}}$$

11.
$$y = 2.7 \sqrt{x+2} + 11$$

12.
$$y = \sqrt{4x - 13}$$

13.
$$y = \frac{4}{7}\sqrt{18-x}$$

14.
$$y = \sqrt{3x+9} - 6$$

15.
$$y = \sqrt{3(x-4)}$$

Make a table of values and graph each function.

16.
$$y = \sqrt{2x}$$

17.
$$f(x) = 4\sqrt{x}$$

See Problem 1.

19.
$$v = \sqrt{3x}$$

20.
$$f(x) = 3\sqrt{x}$$

18.
$$y = \sqrt{4x - 8}$$

21. $y = -3\sqrt{x}$

22.
$$f(x) = \frac{1}{3}\sqrt{x}$$

23.
$$y = \sqrt{\frac{x}{2}}$$

24.
$$y = 2\sqrt{x-3}$$

STEM 25. Physics The function $v = \sqrt{19.6h}$ models an object's velocity v in meters per second after it has fallen h meters, ignoring the effects of air resistance. Make a table and graph the function. For what values of h will the object's velocity be more than 10 m/s?

Match each function with its graph.

See Problems 3 and 4.

26.
$$y = \sqrt{x+4}$$

27.
$$y = \sqrt{x-2}$$

28.
$$y = \sqrt{x} + 4$$

29.
$$v = \sqrt{x} - 2$$

C.

D.

Graph each function by translating the graph of $y = \sqrt{x}$.

30.
$$y = \sqrt{x} + 5$$

31.
$$y = \sqrt{x} - 5$$

32.
$$y = \sqrt{x} - 1$$

33.
$$y = \sqrt{x+2}$$

34.
$$f(x) = \sqrt{x-5}$$

35.
$$f(x) = \sqrt{x-4}$$

36.
$$y = \sqrt{x} + 1$$

37.
$$y = \sqrt{x+1}$$

38.
$$y = \sqrt{x-1}$$

- **39.** What are the domain and the range of the function $y = \sqrt{2x 8}$?
- **40.** What are the domain and the range of the function $y = \sqrt{8 2x}$?

- **41. Firefighting** When firefighters are trying to put out a fire, the rate at which they can spray water on the fire depends on the nozzle pressure. You can find the flow rate f in gallons per minute using the function $f = 120 \sqrt{p}$, where p is the nozzle pressure in pounds per square inch.
 - a. Graph the function.
 - b. What nozzle pressure gives a flow rate of 800 gal/min?
- **42. Error Analysis** A student graphed the function $y = \sqrt{x-2}$ at the right. What mistake did the student make? Draw the correct graph.
- **6 43. Think About a Plan** The velocity v in meters per second of a 2,000,000-kg rocket is given by the function $v = \sqrt{E}$, where E is the rocket's kinetic energy in megajoules (MJ). When the rocket's kinetic energy is 8,000,000 MJ, what is its velocity?
 - · How can you use a graph to solve the problem?
 - · How can you check your answer?

Make a table of values and graph each function.

44.
$$y = \sqrt{x - 2.5}$$

45.
$$f(x) = 4\sqrt{x}$$

46.
$$y = \sqrt{x+6}$$

47.
$$y = \sqrt{0.5x}$$

48.
$$y = \sqrt{x-2} + 3$$

49.
$$f(x) = \sqrt{x+2} - 4$$

50.
$$y = \sqrt{2x} + 3$$

51.
$$y = \sqrt{2x+6} + 1$$

52.
$$y = \sqrt{3x-3} - 2$$

- **6 53.** The graph of $x = y^2$ is shown at the right.
 - a. Is this the graph of a function?
 - **b.** How does $x = y^2$ relate to the square root function $y = \sqrt{x}$?
 - c. Reasoning What is a function for the part of the graph that is shown in Quadrant IV? Explain.
- in 2 0
- **6 54. Reasoning** Without graphing, determine which graph rises more steeply, $y = \sqrt{3}x$ or $y = 3\sqrt{x}$. Explain your answer.

Graph each function by translating the graph of $y = \sqrt{x}$.

55.
$$v = \sqrt{x+4} - 1$$

56.
$$y = \sqrt{x+1} + 5$$

57.
$$y = \sqrt{x-3} - 2$$

58.
$$y = \sqrt{x-6} + 3$$

59.
$$y = \sqrt{x + 2.5} - 1$$

60.
$$y = \sqrt{x - 4.5} + 1.5$$

- **61. a.** Graph $y = \sqrt{x^2 + 5}$.
 - b. Write a function for the graph you drew that does not require a radical.
- 62. In parts (a)-(d), graph each function.

a.
$$y = \sqrt{4x}$$

b.
$$y = \sqrt{5x}$$

c.
$$y = \sqrt{6x}$$

d.
$$y = \sqrt{-6x}$$

e. Reasoning Describe how the graph of $y = \sqrt{nx}$ changes as the value of n varies.