Concept Summary Representing Inequalities

Words

Symbols

Graph

x is less than 3.

x is greater than -2.

$$x > -2$$

x is less than or equal to 0.

$$x \leq 0$$

x is greater than or equal to 1.

$$x \ge 1$$

Interval notation

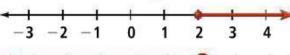
parentheses: Use (or) when a < or > symbol indicates that the interval's endpoints

are not included.

brackets: Use [or] when $a \le or \ge symbol$ indicates that the interval's endpoints

are included.

infinity: Use ∞ when the interval continues forever in a *positive* direction.


Use $-\infty$ when the interval continues forever in a *negative* direction.

Inequality

Graph

Interval Notation

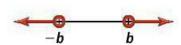
$$x \ge 2$$

$$[2, \infty)$$

$$(-\infty,2)$$

$$1 < x \le 5$$

$$x < -3 \text{ or } x \ge 4$$


$(-\infty, -3)$ or $[4, \infty)$

Key Concept Solving Absolute Value Inequalities

To solve an inequality in the form |A| < b, where A is a variable expression and b > 0, solve the compound inequality -b < A < b.

To solve an inequality in the form |A| > b, where A is a variable expression and b > 0, solve the compound inequality A < -b or A > b.

Similar rules are true for $|A| \le b$ or $|A| \ge b$.