Exit Ticket (Linear, Quadratic, and Exponential Models)

Which kind of function best models the data in the table? Use differences or ratios.

x	у
0	-3
1	-1.5
2	0
3	1.5
4	3

- (A) linear
- **B** quadratic
- © exponential
- (D) none of these
- 2 Which kind of function best models the data in the table? Use differences or ratios.

x	у
0	1.6
1	3.2
2	6.4
3	12.8
4	25.6

- (A) linear
- B quadratic
- © exponential
- none of these

Write an equation to model the data in the table.

x	y
0	4
1	2.2
2	0.4
3	-1.4
4	-3.2

- (A) $y = -1.8x^2 + 4$
- **B** $y = -1.8 \cdot 4^x$
- © y = -1.8x + 4
- ① y = 4x

_____ Date: _____

Write an equation to model the data in the table.

\boldsymbol{x}	y
0	2.7
1	13.5
2	67.5
3	337.5
4	1687.5

- (A) $y = 2.7x^2 + 5$
- **B** y = 2.7x + 5
- © y = 5x
- ① $y = 2.7 \cdot 5^x$

Exit Ticket (Linear, Quadratic, and Exponential Models) Answer Section

- 1 A
- **2** C
- **3** C
- **4** D