Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.

$$
\begin{aligned}
V_{\text {cone }} & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \cdot \pi \cdot 16^{2} \cdot 20 \\
& =5,361,65 \mathrm{ft}^{3}
\end{aligned}
$$

$$
V_{C_{y} \text { in der }}=\pi r^{2} h
$$

$$
=\pi \cdot 16^{2} \cdot 30
$$

$$
=24,127,43 \mathrm{ft}{ }^{3}
$$

$$
\begin{aligned}
V_{\text {Total }} & =V_{\text {cone }}+V_{\text {cylinder }} \\
& =5,361.65+24,127.43 \\
& =29,489.08 \mathrm{ft}^{3}
\end{aligned}
$$

Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.

$$
\begin{array}{rlrl}
V_{\text {conc }} & =\frac{1}{3} \pi r^{2} h \quad V_{\text {cylinders }} & =\pi r^{2} h \\
& =\frac{1}{3} \cdot \pi \cdot 9^{2} \cdot 12 \quad & =3,817.04 \mathrm{~cm}^{3} \\
& =1,017,88 \mathrm{~cm}^{3} & \\
V_{\text {Total }} & =V_{\text {Cone }}+V_{\text {cylinder }} \\
& =1,017,88+3,817.04 \\
& =4,834,92 \mathrm{~cm}^{3}
\end{array}
$$

Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.

$$
\begin{aligned}
V_{\text {Half plan }} & =\frac{4}{3} \pi r^{3} \div 2 & V_{\text {Cone }} & =\frac{1}{3} \pi r^{2} h \\
& =\frac{4}{3} \cdot \pi \cdot 4^{3} \div 2 & & =\frac{1}{3} \cdot \pi \cdot 4^{2} \cdot 7 \\
& =134.04 \mathrm{~cm}^{3} & & =17.29 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {Total }} & =V_{\text {thalfsplen }}+V_{\text {cone }} \\
& =134.04+117.29 \\
& =251.33 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.

$$
\begin{aligned}
V_{\text {cone }} & =\frac{1}{3} \pi r^{2} h & V_{\text {Half selene }} & =\frac{4}{3} \pi r^{3} \div 2 \\
& =\frac{1}{3} \cdot \pi \cdot 5^{2} \cdot 9 & & =\frac{4}{3} \cdot \pi \cdot 5^{3} \div 2 \\
& =235.62 \mathrm{in}^{3} & & =261.80 \mathrm{in}^{3}
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {Total }} & =V_{\text {cone }}+V_{\text {Half sphere }} \\
& =235.62+261.80 \\
& =497.42 \mathrm{in}^{3}
\end{aligned}
$$

Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.

$$
\begin{aligned}
V_{\text {pyramid }} & =\frac{1}{3} B h \\
& =\frac{1}{3} \cdot 6 \cdot 6 \cdot 8 \\
& =96 \mathrm{~m}^{3}
\end{aligned}
$$

$$
V_{\text {prism }}=L W H
$$

$$
=6 \cdot 6 \cdot 4
$$

$$
=144 m^{3}
$$

$$
\begin{aligned}
V_{\text {Total }} & =V_{P_{4} \text { cores }}+V_{\text {perse }} \\
& =96+144 \\
& =240 m^{3}
\end{aligned}
$$

Volume of a Composite Figure

Find the volume. Round to the nearest hundredth if necessary.
(The pyramid is cut out of the rectangular prism)

Volume of a Composite Figure
Find the volume. Round to the nearest hundredth if necessary.
(The pyramid is cut out of the rectangular prism)

$$
\begin{aligned}
V_{\text {Prism }} & =L W H & V_{\text {Pyramid }} & =\frac{1}{3} B h \\
& =25(12)(15) & & =\frac{1}{3} \cdot 25 \cdot 12 \cdot 15 \\
& =4,500 \mathrm{ft}^{3} & & =1,500 \mathrm{ft}^{3}
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {Teal }} & =V_{\text {Prism }}-V_{\text {Pyramid }} \\
& =4,500-1,500 \\
& =3,000 \mathrm{ft}^{3}
\end{aligned}
$$

